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LETTER TO THE EDITOR 

Integrable non-isospectral flows associated with the 
Kadomtsev-Petviashvili equations in 2 + 1 dimensions 

Yi Cheng, Yi-shen Lit and R K Bullough 
Department of Mathematics, University of Manchester Institute of Science and Technology, 
PO Box 88, Manchester M60 IQD, UK 

Received 26 January 1988 

Abstract, The symmetries of the Kadomtsev-Petviashvili ( KP) equations in 2 + 1 dimensions 
yield two hierarchies of integrable non-linear evolution equations (NEE):  one is the familiar 
family of isospectral flows-the KP hierarchy. The other is non-isospectral and its flows 
have coefficients which depend linearly on x and y .  The spectral methods used.to solve 
K P  can be used to solve all these NEE. An underlying infinite-dimensional Lie algebra is 
used to determine all the L a x  pairs for both families, and it also determines their symplectic 
structures. Constants of the motion are constructed for the non-isospectral cases. 

We take the two KP equations [l-31 in the forms [2-71'4: 

U, = au/ax, etc; D, = d/ax and D;' = j:m dx'; KP-I is the positive sign in ( l ) ,  KP-I1 is 
the negative sign. If U + 0 sufficiently rapdily as x2 + y2 + CO and U dx = 0, KP-I is 
solved by a non-local Riemann-Hilbert problem method [4-61; KP-I1 is solved by a a 
method [5,6]. Both equations are Hamiltonian and are completely integrable in the 
sense of Liouville-Arnold [7]. There are infinite sets of independent commuting 
constants [2,3,7,8] and Noether's theorem then suggests there are infinite sets of 
symmetries leaving the Lagrangian invariant. Two such sets, which we call K- and 
7-symmetries, are known [9,10]. The first few are [lo]: 

U, = K [ u ]  = *D;'u, - ~ u u ,  - U,, (1) 

KO = fu, K1 =$U, K2 = K E D;' u , , ~  - ~ U U ,  - U,, 

K3 = -4u,,,, + $( D;' U,,,,,,) - 8 U, D l' uY + ~ U U ,  (2) 

To = tKo U0 T~ = t K ,  + crl r 2 =  t K z + a 2  ( 3 a )  
with 

U1 = YKo cr2 = X K ~ + ~ K ~  + g U  u3= xK,+yK2+$D;'u,, 
( ~ 4  = x K ~  + yK3 - 8 u2  - 4~, ,  - 2 U, D;' U + 2D;' u , , ~  (3b) 

Since the K -  and .r-symmetries are symmetries leaving the KP-I equations (1) 
invariant, they must obviously satisfy the linear variation equation (given here for 
the 7) 

a 
7, = K ' ( 7 )  E lim- K[u -k ET]. 

e+O a& (4) 

t On leave from Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 
People's Republic of China. 
$ It is here convenient to take the scaling of KP as in [8] rather than as in, e.g., [lo]. 
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K ’ ( T )  is thus the Gateaux derivative of K ,  the functional K [ u ]  of U in ( l ) ,  in the 
direction of T. From the Lie bracket defined as 

[A ,  Bi = A’(B)  - B’(A)  ( 5 )  

for any two functionals A[ U], B[  U ]  of U, the higher-order K- and 7-symmetries are 
obtained [ 101 through 

with K 3  from (2) and n 2 3, and T~ from (3) with n 3 4. More generally they form the 
infinite-dimensional Lie algebra [ 101 

so the a,, (which are not symmetries) satisfy the same algebra with a,, replacing 7,. 

The algebras of the a,, or T,, alone are of Virasoro type [ 111. 
It is proved [12] that there exist I,,, J,, such that K, = DXSI,,/6u, a,, = D,SJ,,/Su 

where S/Su is the functional derivative. The first few of these are 

II = f (uD;’D,u) dx dy I I o = i  u’dxdy I 
I [(D;’ D , u ) ~ + u Z , - ~ U ~ ]  dx dy 

and 

They form an infinite-dimensional Lie algebra isomorphic to (7) through the correspon- 
dence [ 121 K,, t* I,,,  T,, t*J, and bracket the Poisson bracket. More precisely this arises 
through the correspondence (the equality) [A ,  B I =  D,(S{F, G } / S u )  with A = 
D,(SF/Gu), etc: in both cases the bracket is the usual Poisson bracket [7,12] {F, G} = 
[(SF/Su)D,(GG/Su)] dx for KP. Since I2 is the Hamiltonian of KP-I [7,12], and the 

I,, are (plainly) independent and in involution, U, = D,(SI,,/Su) = K,, n = 2, 3, . . . , 
form the well known hierarchy of integrable KP-I equations. For the J,, one can check 
that when U, = K2 the total derivatives d(tl,, +J,,)/dt = 0 and tZ,, +J,, are constants. 
Likewise if U, = K,, then f ( m  + l)tIm+,,-z+J,, are constants. Even so, one asks whether 
the equations U, = D,(SJ,,/Gu) = a,, n = 2,3,  . . . , have significance. The point of this 
letter is to show that these flows too are integrable flows and can be integrated. 

We note that there are also two sorts of symmetries, K,, and T,,, for the AKNS 
systems in 1 + 1 dimensions, and Li and Zhu [ 131 show that U, = K ,  and U, = a,, are 
isospectral and non-isospectral respectively. The non-isospectral flows have coefficients 
depending explicitly, but linearly, on x-‘explaining’ previous work [ 14, 15 and 
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references thereinlt on this feature. The AKNS systems are a reduction of the KP-I 
system [17] and apparently KP is more fundamental. In this letter we show the flows 
U, = K, (K, from (2)) are the usual isospectral KP-I hierarchy while flows U, = ( T ~ + ~ ,  

N = n -2, are non-isospectral and are hierarchies of generalised KP-I equations with 
coefficients depending linearly on both x and y .  It is convenient to introduce the label 
N = n -2 (see below) though U, = u N + 2  means U, = U,. 

with coefficients depending on x and y are integrable by the 
same non-local Riemann-Hilbert problem as integrates all of the KP-I hierarchy 
U, = Moreover, unlike the situation for Kdv in 1 + 1 dimensions, and illustrating 
the more fundamental nature of the KP system, the flows U, = uN+2 are Hamiltonian 
with infinite sets of commuting constants TkN), different for each N, which we give 
explicitly; there are further quantities J',"), and there are symmetries R',", F'," such 
that E'," = DX6~',"/6u, FkN) = DXSJ',"'/6u. These form a Lie algebra (for fixed N) 
[ 181: 

The flows U, = 

[ E ( N )  E")] = 0 [E' ,N)  71 - (W] = 1 3(m+l)~',?)l+N 

j[+N) ( N )  ]=f(m-i)R',:)l+N m,l=0,1,2,  ... . (10) 
m ,  I 

We show in this letter how the eigenspectrum and spectral data for U, = u N + 2  evolve 
in time. We also show how the Lie algebras (7) can be used to derive Lax pairs for 
the flow U, = KN+2 and U, = "+2. This is important because the usual integrodifferential 
operator (familiar as L+ [2] in 1+1  dimensions) does not always exist in 2+1 
dimensions in conventional form [ 19-21]. We give actual examples of some integrable 
non-isospectral flows in the final part of this letter. We focus on KP-I throughout but 
note that there is a similar analysis for KP-I1 although a 5 problem is needed to solve 
these equations. 

We will now consider the Lax pairs. The KP-I equation (1) is the compatibility 
condition L, = [B, L] on LJI = 0, +, = BJI with the Lax pair [2-71 

L = $ d  D, + D',+ U 

B = -4D: -6uD, -3u, + i f i  D;'u, 

(1la) 

(1lb) 

where [ , ] is the usual commutator. One checks that L, = [B , ,  L] ,  n = 0, 1,2,3 and 
L, = [C,, L], n = 1,2,3,4 are the non-linear evolution equations ( N E E )  U, = &[U] and 
U, = a,[ U ]  respectively when 

Bo = fD, Bl=i$2fi(Df+u) B 2 = B  (of ( l l b ) )  

B3 = -i8fi D: - i16du  D', - (i16fi U, + 8D;'uy)D, 

- ( i8f i  u 2 + i 8 f i  u,+4uy -$diD;'uYy) 

C1 = yBo - (i/6fi)x 

C3 = yB2+ xB, +42ifi D, + $ i d  D;'u 

Cq=yB~+~B2-6D',+3ifiD;luy4u. 

These operator polynomials are found directly by equating coefficients of powers 
D, (note that D;lu,, is a scalar number not an operator). To proceed further this way 

C2 = yB1 + xBo+f  

t An error in [IS] is corrected in [la]. 
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would be impossibly tedious. However, we can find all of the B, and C,  from the 
algebra (7). We define operators polynomials in D,,  through 

n 2 3  (13) 
3 

n + l  =- (Bk(~3)  - C;(Kn) + [Bn, C3I) 

where a3 and C3 are given by (3) and (12) respectively. B, is a functional of U so it 
has a Gateaux derivative Bh. One proves (13) is a proper definition by induction from 
n = 3 as follows. Note that L, = U, = K, and L, = [B,, L]+K, = [ B , ,  L] ,  and similarly 
C, = [C,, L]. Then from (7), with U, for T,, 

3 
& + I  == (KL(U3)-dKfl)) 

3 
n + l  

-- - ([BL(a3), Ll+[Bn, L'(u3)l-[C;(Kn), L1-[C3, L'(Kn)l)* (14) 

Then from L'( a3) = a, = [ C3, L], and similarly, and by using the Jacobi identity for 
[ , 3 ,  one finds K,+,  = B,,, = L] so that U, = K,+l is L, = [B,+, ,  L] for n 3 3. 
One proves similarly C,+ ,= (3 / (m-3 ) ) (C~(a3 ) -C; (am)+[Cm,  C , ] )  for m 3 4  and 
U, = u , [ u ]  is L, =[C,, L ]  for n = 1 , 2 , 3 , .  . . . 

To apply the non-local Riemann-Hilbert problem method to solve U, = K N + 2 ,  
U, = ffN+2 we need some other results. The operators B,, C, are polynomials in D ,  of 
degrees n + l ,  n. We assume that under the chosen boundary conditions B , + & ,  
C, + e,, as x 2 + y 2  + 00. Then from (13) and its analogue for U, = U, we find 

1, = b,D:+' e,, =yc ,D:+xd ,D: - '+e ,D: -2  (15) 

where b, = f (2if i ) , (  n 2 0), and c,, d,, e, satisfy simple recurrence relations which yield 

c, = 32ifi)'-' d ,  = f(2id3),-' e, = t (n  - 1)(2ifi)"-~ (16) 

for n 3 1 ,  results we use shortly. 
We turn now to the solution by the inverse spectral transform and the evolution 

of the spectral data. 
KP-I is solved by the Riemann-Hilbert problem derived from LJI = 0 with L given 

by ( l l a )  [4,6]. Thus U, = K,, n = 0,1,2, .  . . , is solved by the same method. Then, 
although U, = u ~ + ~ ,  N + 2  = 1,2,  . . . , is not isospectral, it is representable by L, = 
[L, C,] so it is solved by the same method. Under the chosen boundary conditions 
KP-I has lump solutions [4 ,6 ,7]  and there are both discrete and continuous spectral 
data. The continuous data f ( k ,  I, t )  satisfy [4,6] 

where JI*(k) solve LJI*(k) = 0: they satisfy [4,6] exp[-i(kx -d3k2y ) ]JI*  = p* - 1 as 
x 2  + y 2  + 0O and p* can be analytically continued from the real k axis into the upper 
and lower half k planes respectively. The functions p* satisfy a Fredholm equation 
of the second kind with Green functions derived from LJI' = 0, i.e. from ( D i +  k2+  
D , ) G  = - S ( x ) S ( y )  (refer to equations (7) (there given for n = 2) and (5) of [6]). Simple 
poles in the eigenfunction p* at k = kj' determine lump solutions [4,6]. Then discrete 
data yj are defined through [4,6]: 

(18) limt ( p * - i $;(x, y ) ( k - k;)-') = [ x - 2 f i  k; y + $1 JI;( x, y ) 
k - t k ,  
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the residues $f are homogeneous solutions corresponding to kf of the Fredholm 
equation normalised by (x  - 2d3 kf ) $7 + 1 as ( x2 + y2)'" + CO. 

A complete set of spectral data S is [4-61 S = cf( k, I; t ) ;  kj', yf, 1 d j d M}. For 
its time evolution we first add a scalar multiple &(k)  of the identity to B,: P,,(k) is 
then essentially the linearised dispersion relation (as usual). Thus we set 

(19)  

and since $*={expi(kx-f ik2y)}p*,  and p * - l ,  B , - &  as x 2 + y 2 + ~ ,  & ( k ) =  
(i/6d3)(-2d3k)"+'. Then, by applying L , ( k )  to (17) and using L,(k)-p,(k) = 
L, ( I )  - Pn ( I )  we readily find 

(20) 

(21) 

Lfl(k)$ = (Dl - Bfl +Pn(k))$ = 0 

f t ( k ,  I )  = (i/6&)((-2&k)"" -(-2fil)"+')f(k, I)  

k* J ,  1 = O  y;, = +( n + 1)( -2&kj')" 

while in a similar way we find 

j = 1, . . . , M. 

Results (20) and (21) coincide for n = 2 with those derived for KP-I [4,6]. 
For the time evolution of the scattering data for U, = uN+2 we define L,(k) through 

L,(k)$ (0, - C, + C Y , (  k))$ = 0. (22) 

k, =(-1/6&)(-2fik)"-' (23) 

df/dt=$(n - 1)~[(-2fik)"-2-(2&I)"-2]f(k, I )  (24) 

From the asymptotics of $* and C, - c,, as x2+y2+  00 we then find 

for all k in the k plane while a,(k) = - b ( n  - 1)(-2fik)"-'. Consequently 

where df/dt=ft+fkk,+jJ, and k, is given by (23): I ,  is (23) with I replacing k. 
For the discrete data we use (18). Equation (22) for $* is an equation for the p* 

and thus for the residues $7 at their poles kf. For large x, y (22) means L,(k)-O 
where 

n -2 

with c,, d, ,  en from (16). Then, since from (18) limk+ ( k -  k f )p*  = $j', application 
of L,, to this result followed by execution of the actual limit k +  kj' yields 

after using (23) for k, and kj,,. Finally we apply L, , (k)  to (18) itself; use (25) and 
(261, and take the limit k +  kj' to find that (18) reduces to ,C,(kj')(x - 2 8  kj'+ y j ' ) ,  so 
that, by using (26) 

y j f , + f ( n  - 1)(-2fikf)"-'yj' = - f ( n  - l ) ( n  -2)(-2& k 3 - 3 .  (27) 
We thus have the time evolution of the spectral data S for U, = u ~ + ~ ,  n = N - 2  = 
1,2, .  . . ; if these equations can be solved the data S can be inverted (at fixed t )  exactly 
as in the isospectral case. 
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By continuation so that y +  -iy KP-I becomes KP-11. For the latter it is therefore 
sufficient to replace y by -iy at each point of the analysis to (16). Then, although the 
method of solution becomes a problem [5,6] and data Tl(k) [6] replace f(k, l )  and 
there are no discrete data (while p and rl, are nowhere analytic and have no continu- 
ation), the present analysis is little changed. One finds 

(28) 
where dT,/dt = TI,,+ k, + TI ,&;  k = kR+ik,,  E =  kR-ik, and k,, E, are (23) in 
terms of k or E 

We now consider the symplectic structure and constants of the motion, returning 
to KP-I and its hierarchies. The In of (8) are constants for U, = K,. The constants for 
U, = U,, are constructed as follows [ 181. We define 

dTl/dt  = $( n - 1)$ [ ( -2d  k)n-2 - (2d3 @-2]Tl  n z l  

for n = 0, 1,2 ,  . . . : N 3 -1 is a fixed integer to be identified with n - 2; the f n m  depend 
on t ;  A = (-2d3 k). One checks 

while 

Thus the i,,, are constants with respect to the Hamiltonian Jn+, and the flow U, = 
D,SJ,+,/Su = u ~ + ~ .  They are in involution, and since N 2 -1 is an arbitrary integer 
there are distinct countably infinite sets of f m  for each N and each flow U, = c 7 N + 2 .  

This does not (quite) prove u , = u N + ,  is completely integrable. But the 1, can be 
expressed in terms of scattering data [7] and for each N the in therefore can be. We 
then find the fn = f ( n N )  can be expressed in terms of action-type variables alone with 
a determinable time evolution. We give the details elsewhere (some details are in [18]) 
and show there also that there are the further quantities JLN1 and symmetries ELN), 
77,"' of U, = uN+2 satisfying the Lie algebra (10) mentioned earlier in this letter. We 
should note that N = n - 2  only becasue we work from KP-I with symmetry K = K,: 
from K 3 K ,  we derive flows U, = T(,,-,,,)+,,, and N = n - m. However, the J',"' are 
linear combinations of the In and satisfy a relation like that for the f ( m N ) .  Thus there 
is no point in pursuing flows and symmetries U, = E',", U, = F'," for each N as (10) 
suggests. There are thus the flows U, = K,  and U, = U,,, and only these, of independent 
significance. We complete this letter with some examples. 

{im, i J = O  m , n = 0 , 1 , 2  ,.... (316) 

A general set of integrable NEE is evidently 
M M' 

u , =  2 onKn+ 2 &,,U,, 
n=O n = l  

with Lax operator L given by ( 11 a )  and B given by B = X yz0 wnBn + Z ;1"=' OnCn. These 
NEE are solved by the spectral method sketched earlier in this letter and the spectrum 
evolves as A, = @ ( A ) ;  R =Xy:, &A"-' with A = - 2 f i  k. More particularly consider 

U,= K , + ( Y ( T ~ + ~ U ~  

= D;'u,,, - ~ U U ,  - U, + $(YYU, + p ($xux + $w, ,  +$U) (33) 
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in which a, p are constants. The Lax pair operator is B = B2+ aC1 + pC2, and the 
time evolution of the spectral data is 

( - 2 f i  k,’) ,=fa+fp(-2f i  kj’) 

y:,= 12k,’-$py,’ (34) 

ft =4i(13 - k3)j+ (6fi)-’aVk+fr) -&ickyk + 6). 
Moreover the Hamiltonian is H = 12+aJ,+pJ2 (determined by (8) and (9)) and the 
constants of the motion are 

Further details of the results given in this letter as well as some of their generalisa- 
tions mentioned will be given elsewhere. 

The authors are grateful to the British Council who supported one of us (YC) at 
UMIST and the visit there of another of us (YL). 

Note added in proof: In connection with the Virasoro type algebras of (7) and (IO), it has been shown [22] 
that symmetries like the 7, in 1 + 1 dimensions can be realised as infinitesimal conformal transformations 
of the spectral problem: no equivalent result for the KP equations (which are also discussed) was reported. 
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